
int. .I. Hr~of Mars Transjrr. Vol. 36, No. 14. pp. 3459-3475, 1993 
Printed m Chat Britain 

Computational modeling of the gas-phase 
transport phenomena during flame-jet 

thermal spallation drilling 
MARK A. WILKINSON and JEFFERSON W. TESTER 

Chemical Engineering Department and Energy Laboratory, MA Institute of Technology, 
Cambridge, Massachusetts 02139, U.S.A. 

(Received 29 June 1992 and in,final,fortn IO February 1993) 

Abstract-Rock spallation induced by thermal stress can be used to drill through hard rock at high rates. 
In order to characterize the importance ofoperating parameters on rock penetration rate and hole geometry, 
a modeling effort was initiated. Because supersonic flame jets are used to induce thermal stress in practical 
spallation drilling systems, a comprehensive treatment of turbulent gas phase heat, mass, and momentum 
transport was developed and coupled to a rock mechanics-based model of thermal stress induced failure. 
Work reported in this paper provides the mathematical framework, governing equations, and com- 

putational algorithms and compares model-predicted results to experimental data when possible. 

1. INTRODUCTION 

THERMAL spallation can be broadly defined as frag- 
mentation of the surface of a brittle solid into small 
disk-like flakes, called spalls, by rapidly heating a 
relatively small fraction of the solid (e.g. less than 
10% of the exposed area). Thermal stresses arising 
from the tendency of the heated portion of the 
material to expand as temperature is increased cause 
failure to occur. When thermal spallation is used for 
rock drilling, a ‘flame-jet’ like the one shown in Fig. 
1 is commonly used to impart the high heat fluxes 
(typically greater than 1 .O MW m-*) required and to 
sweep away the spalls [l, 21. Typically, the gas flow 
exiting a flame-jet is underexpanded at a nozzle-to- 
ambient pressure ratio of at least 4.4. The high jet 
momentum sweeps spalls awdy from the rock surface 
rapidly, exposing new surface area for further pen- 
etration. 

Drilling systems that employ conventional rotary 
methods that crush and grind rock with hardened tri- 
cone bits are inherently prone to wear and failure, 
especially when encountering hard rock in deep for- 
mations. These and other factors give rise to an expon- 
ential or near-exponential dependence of drilling costs 
on depth 13, 41. Flame-jet methods operate with a 
fundamentally different mechanism of rock failure, so 
that it may be possible to reduce subs~ntially this 
exponential dependence of drilling costs on depth. 
Initial applications of thermal spallation drilling tech- 
nology are envisioned for developing the so-called hot 
dry rock geothermal resource in hard, crystalline rock. 
In regions with low geothermal gradients, deep (>5 
km) holes would be needed [3, 41. Now, however, it 
appears that the market for spallation applications 
may be expanding to oil and gas development as a 
recent breakthrough has been reported where lime- 

stone has been successfully spalled using a flame-jet 
device [5]. 

Earlier research on spallation at MIT by Rauen- 
zahn [6] and Rauenzahn and Tester [7-IO] established 
the basis for the present study. In the current phase 
of our research, we have focused on further char- 
acterization of fundamental mechanisms of spa11 for- 
mation and on modeling fluid flow and heat transfer 
processes important to simulating drilling and quarry- 
ing conditions observed in practice [2, 111. A key 
objective was predicting penetration rate and borehole 
geometry as a function of primary operating variables 
such as flame temperature, jet velocity, nozzle stand- 
off distance, and the thermophysical properties of the 
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NOMENCLATURE 

speed of sound [m s- ‘1 
non-dimensional timestep, aAt/Ax 

spa11 diameter : thickness ratio 
constant pressure heat capacity 
[J kg-’ Km’] 
universal turbulent viscosity constant 
(0.09) 
artificial dissipation after the nth stage 

total energy [J] 
Young’s modulus [MPa] 
convective radial flux vector 
convective axial flux vector 
energy losses due to miscellaneous phase 
transitions and crack formation 
[W m-‘1 
internal energy [J] 
Jacobian 
turbulent kinetic energy 
rock thermal conductivity [W mm’ Km-‘] 
unweighted Laplacian operator 
modified Laplacian operator (equation 

(29)) 
Weibull homogeneity parameter 
source term vector 
jet Mach number, UJa,,, 
pressure [Pa] 
production rate of turbulent kinetic 
energy 
production rate of dissipation of 
turbulent kinetic energy 
turbulent Prandtl number (0.86) 
heat flux in direction i [W mm*] 
local heat flux to rock [W mm’] 
predicted heat flux [w m -‘I 
total jet inlet enthalpy flux [W m-‘1 
wall heat flux [W mm’] 
radial coordinate direction [m] 
ideal gas constant, 8.3 I4 J rnol~~ ’ K ’ 
average non-dimensional penetration 
rate (equation (41)) 
radial viscous flux vector 
nozzle Reynolds number, pie, Uj,tR”,,/~,et 
nozzle radius [m] 
hole radius [m] 
residual representing spatially discretized 
terms in equation (16) 
axial viscous flux vector 
dimensionless stand-off distance, 

-%,I&,, 
Stanton number 
Stanton number based on predicted 
surface heat flux 
Stanton number based on experimentally 
measured penetration rate 
time [s] 
temperature [K] 
local surface temperature [K] 

initial rock temperature [K] 
stagnation point surface temperature [K] 
gas temperature at nozzle outlet [K] 
radial velocity component [m s-‘1 
state vector (p, pu, pv, pE) 
local drilling velocity normal to rock 
surface [m ss’] 
jet velocity [m s- ‘1 
axial velocity component [m s- ‘1 
sample or cell volume [m’] 
velocity vector (u, U) [m s-‘1 
forward drilling or penetration rate 

[ms-‘1 
distance measured in a direction 
perpendicular to the rock wall [m] 
axial coordinate direction ; distance 
measured normal to rock surface [m] 
axial distance from the stagnation point 
to the nozzle outlet [ml. 

Greek symbols 
thermal diffusivity of the rock [m’s_‘] 
thermal coefficient of expansion, 
V-‘(aV/aT), [K-‘1 
heat capacity ratio, C,/C, 
Kronecker delta (1 if i = j; 0 if i f-j) 

turbulent dissipation rate of turbulent 
kinetic energy 
2nd and 4th difference artificial viscosity 
coefficients 
angle between tangent to the rock surface 
and the horizontal axis ; coordinate 
direction 
von Karman turbulence constant (0.41) 
thermal conductivity [W m-’ K-‘1 
dynamic viscosity [kgg’ mm’s_‘] 
Poisson’s ratio 
horizontal axis coordinate in 2-D 
computational space 
density [kgmm3] 
stress [MPa] 
deviatoric stress component in the i,j 
direction [Pa] 
vertical axis coordinate in 2-D 
computational space 
boundary movement acceleration 
parameter. 

Subscripts and superscripts 
bl boundary layer edge property 
dr drill 

exp experimental value 
E relevant to turbulent dissipation rate 

equation 
f cell face property 
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jet at jet outlet (nozzle) r rock property 

k relevant to turbulent kinetic energy s rock surface property 
equation sP at spallation 

lot local conditions st at stagnation point conditions 

max maximum t turbulent conditions 

noz at nozzle T total 

pr penetration rate W wall conditions (in gas phase). 
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rock. As discussed in the following section, the heat 
flux and surface temperature on a spalling surface 
determine the penetration or drilling rate in a specific 
rock type. A distribution of heat fluxes and rock sur- 
face temperatures leads to a range of drilling velocities 
and thereby determines the hole shape and the net 
forward drilling rate. 

Rauenzahn and Tester [9, lo] developed a method 
for predicting rock surface heat fluxes and surface 
temperatures using a computational model of the fluid 
mechanics and heat transfer from a flame jet to a 
spalling rock surface and using Dey’s [ 121 rock mech- 
anics based thermal spallation model. The present 
study was aimed at improving the accuracy of heat 
flux predictions over a practical range of operating 
parameters. Experimental validation of some results 
are described in detail in a separate paper (Wilkinson 
and Tester [ 131). 

In this paper, we first present the equations govern- 
ing thermal spallation drilling and then provide the 
details of our approach to modeling fluid mechanics 
and heat transfer processes, including the numerical 
method used to solve the conservation equations. 
Validation studies, grid generation methodology, and 
the numerical algorithm used to calculate the position 
of the rock boundary during the simulation are then 
described briefly. Comparisons of computational and 
experimental results are discussed in the final sections 
of the paper. 

2. EQUATIONS GOVERNING STEADY-STATE 

THERMAL SPALLATION DRILLING 

A local energy balance on a control volume sur- 
rounding the rock-gas interface during thermal spall- 
ation drilling may be written as : 

where pI- = rock density [kg mm’], C,, = rock heat 
capacity at constant pressure [J kg-’ K-‘I, Q = local 
heat flux to the rock [W m-‘I, U,, = local penetration 
rate normal to the surface [ms-‘I, AHpt = energy 
losses due to miscellaneous phase transitions and 
crack formation wrne2], 7’, = local surface tem- 
perature [K], and T, = initial rock temperature [K]. 
Equation (1) is derived assuming quasi-steady state 
conditions and that the entire spa11 is approximately 
at the surface temperature of the rock [6]. The second 
term on the right-hand side of equation (1) (AHp,) is 

expected to be negligible during thermal spallation 
drilling, except near the rock melting temperature. 

Assuming that steady-state flame-jet thermal spall- 

ation drilling is possible, the average hole shape in 
the actively spalling region must remain constant and 
satisfy the condition that the forward component of 
the local penetration rate is the same everywhere. This 
is illustrated in Fig. 2 and can be expressed math- 
ematically as : 

u*r 
Vdr = ~ 

cos (0) (2) 

where V,, = forward advance rate of drill head 

b s-l 

- 

and 0 = angle of the tangent of the rock 

FIG. 2. Illustration of modeled region and self-consistency 
condition (equation (2)). 
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boundary to the horizontal plane. One can easily show 
by simple geometric reasoning that 0 is also equivalent 
to the angle between the normal to the rock boundary 
and the vertical plane as shown in Fig. 2. 

Heat flux and hole diameter predictions are com- 
pared with experimental results by forming non- 
dimensional Stanton numbers and hole radii. In this 
case, the Stanton number (St) is defined as the ratio 
of the rock surface heat flux (Qr) to the total jet inlet 
heat flux (Q,,,), or: 

St = QJQ,ct (3) 

where 

and r,,, is the gas temperature at the nozzle outlet. 
In order to determine an experimental value of the 
Stanton number (St,,,) from a measured penetration 
rate (V,,), Qi is calculated from equation (1) giving : 

Computer simulation results predict directly the rock 
surface heat flux so that predicted Stanton number 
(Sr,) is given as a function of predicted heat flux (Q,,) : 

The final requirement for estimating drilling rate 
and hole shape during thermal spailation drilling is 
a functional relationship between the rock surface 
temperature and the applied heat flux. Using Dey’s 
[ 121 thermal spallation rock mechanics model based 
on a failure mechanism characterized by Weibull stat- 
istics, the surface temperature is given by : 

where the spa11 diameter to thickness ratio CL = 15, 
m and 6, represent empirically-fitted Weibull par- 
ameters, vp = Poisson’s ratio, fir = coefficient of 
thermal expansion, E,, = Young’s modulus, and 
a, = thermal diffusivity. 

Rauenzahn and Tester [9] used Dey’s model and 
semi-empirical fitting parameters estimated from 
mechanical spallation tests conducted at ambient tem- 
perature. In an earlier paper [13], Wilkinson and 
Tester estimated that errors resulting from the use of 
mechanically-based Weibull parameters probably 
accounted for about 50% of the discrepancy between 
predictions and experimental measurements reported 
earlier [9, IO]. Furthermore, we derived more accurate 
fitting parameters based on surface temperature 
measurements and estimates of the heat flux occurring 
during thermal spallation drilling. 

3. PREDICTING THERMAL SPALLATION 

FORWARD DRILLING RATE AND HOLE 

DIAMETER : MODEL DEVELOPMENT 

As discussed in the previous section, predicting for- 
ward drilling rate and hole diameter requires knowl- 
edge of the spatial distribution of rock surface tem- 
perature and heat flux. Determining the heat Aux 
requires solution of the mass, momentum, and energy 
conservation equations for the high temperature gas 
stream that impinges on the spalling rock surface. The 
model development and numerical method used in the 
present study are described in this section. 

Govrrning equations 
The governing conservation equations for mass, 

momentum, and energy are solved subject to the 
appropriate boundary conditions and constitutive 
relationships. The equations are approximated on a 
finite grid of points. Estimated surface heat fluxes are 
used to re-position the simulated rock boundary until 
the hole shape conforms to the consistency criterion 
given by equation (2). The governing equations are 
expressed in axisymmetric, vector form as : 

where : 

U 

R= 

atlo = P- 2~: - $pdiv(V) 
> 

(7) 
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V = velocity vector with radial (u) and axial (u) com- 
ponents, r,,j = deviatoric stress tensor component in 
the i,j direction [Pa], u, v = radial and axial velocity 
components [m ss’], r, z = radial and axial coor- 

dinates [ml, E = total energy per unit mass [J kg-‘], 
y = ratio of heat capacities, C,/C,,, and P = fluid pres- 
sure [Nm--‘I. 

The set of equations employed in this study and 
expressed by equation (7) are the ‘Reynolds averaged’ 
conservation equations [14]. These equations include 
the effects of turbulent momentum and heat transport 
and therefore contain additional components in the 
stress tensor and in the heat flux vector due to tur- 
bulent fluctuation (see ref. [31] for details). 

In the present study, the flow-field is conceptually 
divided into a near wall region, where hydrodynamic 
behavior is similar to that in a compressible turbulent 
flat-plate boundary layer, and a far-field, where simple 
models based upon well-known velocity and tem- 
perature profiles cannot be used. In the far-field 
region, the k--E turbulence model described by Laun- 
der and Spalding [ 161 is used to calculate the turbulent 
viscosity coefficient according to the following re- 
lationship, obtained from scaling arguments applied 
to the transport equation for turbulent kinetic energy : 

PC, = 
pC,,kZ 

E 

where k is the turbulent kinetic energy per unit mass, 
and E is the isotropic dissipation rate of turbulent 
kinetic energy per unit mass. The value of C, has been 
experimentally determined to equal 0.09 [I 71. 

When using the k--E turbulence model, transport 
equations are written for k and E as functions of 
mean flow-field properties. These equations have been 
derived from the turbulent form of the conservation 
of momentum equation. The final modeled turbulent 
kinetic energy and dissipation rate equations used in 
the present study are [ 181: 

3Pk -= - 
at 

1 a(rpuk) + a(pt’k) ___~ ~ 
r & a2 

-th-P& (9) 

o”pe -=_ 
at ( 

1 a(rp246) + a(pvs) -____ ~ 
r ar a2 > 

where Pk and P, are the rate of production of turbulent 
kinetic energy, and the rate of production of dis- 
sipation of turbulent kinetic energy, respectively : 

+r;; (g) - ““1 -jdiv(V) (11) 

P~=~[c~~~“(~)+~~~~~+~) 

+C3zzz(g) -Ciy] -:C,div(V) (12) 

where Pi, pLF = turbulent diffusion coefficients for k 
anda, C, = 1.55, C2 = 2.0, C) = 1.0, andpr = ~L,+P. 

These equations are solved throughout the des- 
ignated ‘far-field’ domain in order to be able to ulti- 
mately calculate the wall-region heat transfer. A modi- 
fied form of the semi-theoretical Prandtl [19] mixing 
length model is used in the near-wall region for pre- 
dicting velocity and temperature profiles. The final 
expressions for the wall shear stress (7,) and heat flux 

(Qw) are : 

(13) 

(14) 

where T,, = temperature at the outer edge of the 
surface roughness, !I+ = hu,p/p, h = r.m.s. surface 
roughness height, K = von Karman constant (0.41) 
Pr, = turbulent Prandtl number z 0.86, u, = 

(LJPW) “27 and St,’ = 5.19 !z+“~” Pr0.44 [20]. 

Boundary conditions 
The boundary conditions that are used to solve the 

conservation equations (7) are depicted on Fig. 3. The 
centerline boundary is assumed to be an axis 
of symmetry and therefore represents a zero flux 
condition. Solid walls, for example the spalling rock 
surface, are treated as no slip boundaries with zero 
pressure gradients normal to the surface. Temperature 
is specified on the rock surface from equation (6), 
whereas the drill housing was assumed to be adiabatic. 
Physical properties and Weibull parameters, m and 
oO, are averages of Barre and Westerly granite values 
(see ref. [ 131). The turbulent kinetic energy is set equal 
to zero on solid surfaces, and the dissipation rate is 
specified at the computational node nearest to the wall 
by the following relationship [ 161: 

E _ CF2 
YP 

(.15) 
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Q,: T, .. wall functions 

FIG 3. Boundary conditions. 

At the nozzle outlet, the turbulent kinetic energy is 
specified as 5% of the mean flow kinetic energy and 
the turbulent length scale is specified as one-third of 
the nozzle radius. At the outlet from the cavity, zero 
streamwise gradients are assumed for all variables 
except pressure. Pressure is set from the user-defined 
under-expansion ratio (P,,,/Pa,r,) which equals 4.4 
for all cases tested. 

~ofufion o~gouerning eqMutions 
Discretization technjques are adopted whereby the 

property conservation laws are expressed for small 
(but finite) volume elements that are formed by break- 
ing up the flow-field domain into a grid of points. The 
net flux of mass, momentum, and energy into each 
volume element (or ‘cell’) is approximated and 
numerical time integration is performed until all cells 
are at steady-state conditions (no accumulation). 

A finite volume approach described in detail by 
Wilkinson [21] was used to formulate the discrete set 
of conservatjon equations giving : 

L( 

V$ + [(rF#z- (rG)&] - [(vR)dz--(rS)drl 

(1) (If) (III) 

ap + zrdrdz = VIM2 

(IV) (vt (16) 

where 

V = cell volume 

M 2 = U(&[O, --rO&, 0, 01 

F 2 = F-[O,P,O,O]. 

Equation (16) serves as a starting point for dis- 
cretizing the flow-field and approximating the flux 
balances. The first term on the left hand side of equa- 
tion (16) represents the rate of change of the state 
vector inside a given spatial region having a volume 
V. The second and third terms are convective and 
diffusive flux balances that effectively sum all inflows 
and outflows of conserved quantities from the volume. 
The pressure integral to the left of the ‘ = ’ sign and 
the source term appearing on the right hand side of 
the equation arise from the use of an axisymmetric 
co-ordinate system. The following sections give details 
of the method used for solving equation (16) in the 
physical domain appiicabie to spallation drilling. 

4. FLUX CALCULATIONS 

The line integrals appearing in equation (16) are 
rewritten in terms of face integrals on each edge of the 
computational cell (see Fig. 4(a)) and then the fluxes 
are approximated. For example, the convective flux 
integral is written 
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a) Convective Flux Cell (shaded). 

where F,,, and GA are flux vectors evaluated at node 

point A. This formulation results in leading error 
magnitudes of O(Ax*) everywhere in the flow-field 
whereas a more commonly used and straightforward 
method of neglecting the variations of r in the face- 
integrals result in O(Ax) or less accuracy near the axis 
of symmetry where r -+ 0. 

The fourth term (IV) in equation (16) is discretized 

using a pseudo finite-element technique in which the 
pressure derivative is expanded using the chain rule, 
leading to : 

t?P I 8~ aZ ap a2 
cSr=IJI ay a~ a~ ag ( 

--_-- 
> 

(191 

bt Node Cell -- Viscous Flux Balance. 

where IJJ = Jacobian determinant, and 5, q = local 
coordinates in computational space (0 g 5, q < 1). 

Radius and pressure variations on a cell are given 

by: 

ef Node Super Cell -- Total Flux Balance. 

FIG. 4. Integration areas for convective, viscous or diffusive 
and total flux balances. 

p= PAU -5x1 -d+Ps(S)U -II) 

+pct~)trl)+pDt~-r)tr). 

substituting equations (20), (Zl), and (19) into 
(IV) of equation (16) leads to [22] 

,.!$..& = (“8:zD) 
ar 24 [PA (4r, + 3r, + 2r, -t 3r 

- PA(2rA + 3r, +4rc + 3rd 

9 iPBf3rA +4re +3rc+2r,) 

[(rFdaz- (rG)ib] + [(rF,)&- (rG)&] 
-PD(3rA+2rB+3rc+4rD)] 

+ eDA [(rF,)lJz-(rG)ar]. (17) 
Q 

+ (rB -rD) 
~[PA(&3+XD-2XC) 

Each of these integrals is approximated by assuming 
that r, z, F2, and G vary linearly along the cell faces 
[22]. For face A-B this gives : 

r= rAU-it)+d, 

F, =FZA(l-{)+FZ8t,etc.... 

where g varies linearly from zero to one with distance 
along the face. The integrated expression for the con- 
vective fluxes on face A-B is given by [22] 

[(rF*)az- (rG)&] 

[rA (2FzA + Fd f r&FzB + hAlI 

+ [zn(2GA+Gs)+lg(268+GA)] (18) 

(20) 

(21) 

term 

‘D ) 

- p [P&A +xc-2x,) 

- P, (XA + Xc - 2xs)]. (22) 

Velocity and temperature derivatives are required 

for evaluating the viscous stresses and heat fluxes (R 
and S) appearing in equation (16). Green’s theorem 
is used to approximate each derivative as an integral 
around a cel1, resulting in cell-centered viscous fluxes. 
The derivatives are calculated according to the 
method described by Peyret and Taylor [23] 

(23) 
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au I __= _- 
a2 A i 

udr 

where A is the cell area. The integrals in equations 
(23) and (24) are approximated by finite sums giving : 

(25) 

where the subscript f is a cell face index. This method 
of calculating derivatives automatically accounts for 
grid lines that are not parallel to the coordinate axes. 

The integration regions used for evaluating the con- 
vective and viscous fluxes are different from one 
another (Fig. 4). Convective fluxes are calculated at 
nodes, resulting in cell centered flux balances (Fig. 
4(a)), whereas viscous fluxes are defined at cell centers, 
resulting in node-centered flux balances (Fig. 4(b)). 
The entire scheme becomes node-centered by sum- 
ming the convective fiux balances from the four cells 
making up the ‘node super-cell’ (Fig. 4(c)). 

The methodology described above defines a scheme 
that is formally second-order accurate. However, for 
forward time differencing, the scheme is unstable 
when viscous terms are small because the convective 
flux integration is equivalent to a centered difference 
approximation of the spatial derivatives appearing 
in equation (7). Artificial dissipation and a four- 
stage/time-stepping method described in the following 
sections are used to stabilize the numerical algorithm. 

5. ARTIFICIAL DISSIPATION 

The flux integration method described above is 
equivalent to a centered difference approximation of 
the flux vector derivatives in equation (16). Centered 
differencing of convective derivatives is uncon- 
ditionally unstable when used with forward time step- 
ping. Furthermore, the leading order error term of the 
modified differential equation that is actually being 
solved by the numerical method is proportional to the 
third derivative of the dependent variable. Odd order 
derivatives lead to wave dispersion phenomena result- 
ing in oscillations near discontinuities, such as shock 
waves, and ‘odd+ven’ decoupling of the numerical 
solution at neighboring node points. In the present 
study, ‘artificial viscosity’ is added to overcome odd- 
even decoupling. 

The method of introducing artificiai dissipation 
into the numerical solution algorithm used in this 
study is an extension and modification of methods 
described by Ni [24], Rizzi and Eriksson [25] and 
Powell [26]. The artificial dissipation has two com- 
ponents: a second-difference term that is turned on 
only at shocks, and a fourth difference term that is 
turned on where the turbulent viscosity is not high 
enough to damp odd-even decoupling. The fourth- 
difference term is O(Ax3) and therefore does not affect 
the formal solution accuracy. However, the second 
difference term degrades the solution accuracy to first 

order in shocks. This is typical of all ‘shock-capturing’ 
numerical schemes because the shock structures must 
be smeared out to at least the width of one grid cell 
for these numerical methods to be stable. 

The fourtll-difference operator is given by : 

Dl(U) = E&~(U) (26) 

where F~ is the fourth-difference artificial viscosity 
coeficient, L is an unweighted Laplacian operator, 
and 1;’ is the (unweighted) biharmonic operator. 
Away from the boundaries, the Laplacian is expressed 
as (see Fig. 5) : 

WJ) = usw +&++UNE +uw 

+2(Us+U,+U,+U,)--12U. (27) 

The biharmonic operator appearing in equation (26) 
is simply calculated by applying the Laplacian oper- 
ator (equation (27)) to the Laplacian of the state 
vector. 

The second difference operator takes the form : 

D2(U) = F$(U. 6P) (28) 

where E, is the second difference artificial viscosity 
coefficient (0.014.05), and ?, is a modified Laplacian 
operator that uses a weighting function, dP, as 
follows : 

E(U, 6P) = (U,, - U)SP,, + (U,, - WP,, 

+ (UNF. -U)6P,, + w,, -U)@,, 

~2(U,-U)CtP,+2(U,-u)6P, 

+ 2(U, -U)6P, +2(uw - U)6P,. 
(29) 

The weighting function is defined at node points 
by: 

&p = _LCK 
IL(P)/% 

(30) 

where 1 jui denotes the maximum of the enclosed 
quantity over the entire solution domain. Values of 

x = Cell center. 
o = Node. 

FIG. 5. Laplacian operator stensil (adapted from Powell 

1261). 
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6P between nodes are obtained by taking the 

maximum, for example : 

6Psw = max [dP, SP,,]. (31) 

Boundary values of SP are set equal to zero. The use 
of the pressure switch given by equation (30) as a 
weighting function allows the algorithm to detect 
when shocks occur and automatically add second 
difference smoothing terms only in these regions. This 
is done in an attempt to use the minimum amount of 
smoothing possible for stable shock capturing. 

form of equation (16) evaluated after stage ‘k’, 
D” = artificial dissipation evaluated after stage n, and 
At = time step. 

Computational efficiency is achieved by evaluating 
the physical and artificial dissipation terms during 
only the first stage. 

7. SOLUTION OF TURBULENCE TRANSPORT 

EQUATIONS 

Numerical experiments conducted during the pre- The k--E model equations given by equations (9) 

sent study indicate that the fourth-difference artificial and (10) are of the same form as those in equation 

dissipation expressed by equation (26) must be turned (7). Therefore, the convective, diffusive, and artificial 

off in shocks, high turbulent viscosity regions, and in dissipation terms are discretized as detailed in Sections 

the boundary layer along the spalling rock surface in 4-6. However, the turbulent kinetic energy production 

order to obtain solutions that are independent of the and dissipation terms are treated implicitly during 

fourth difference artificial dissipation coefficient. The each stage of the time integration procedure in order 

method used to automatically switch off the fourth to improve numerical stability. The discrete, implicit 

difference artificial dissipation in the regions described forms of the turbulence transport equations are given 

above is expressed by : by: 

where ~04 = user specified fourth difference damping 
coefficient (x 0.001). In addition, the total artificial (PC) 

I+ I = (&f l/2 

dissipation was linearly reduced to zero across the 
outer region of the boundary layer by setting : 

4,(U) = WJ)(YIK~) (33) 

(36) 

(37) 

where D,,,(U) = total (second plus fourth difference) 
artificial dissipation in the boundary layer, and 
y = distance from the rock surface. 

The second and fourth difference contributions are 

combined in the following way : 

WJ) = b(U)-D,(U) (34) 

and then added to the right-hand side of equation 
(16). The next section describes the numerical time 
integration method used to achieve the steady-state 
solution of equation (16). 

where the superscript k+ l/2 implies that the values 
have already been updated to account for the con- 
vective, diffusive, and artificial dissipation flux bal- 
ances calculated at stage k, and CFL is the Courant- 
Friedrichs-Lewy number (aAt/Ax). 

Equations (36) and (37) are manipulated to yield 
an expression for the value of (pe) at stage k + 1 : 

w k+, _A~+&%-%-&) - __ 2A (38) 
I 

where 

6. TEMPORAL DISCRETIZATION 

Equation (16) represents a coupled set of semi- 
discrete, non-linear equations describing the time rate 
of change of the state vector, U. A multistage scheme 
is used to integrate these equations to steady state. 
The method is given by Jameson [27] : 

U’ = U”-a,(At)(R”-D”) 

U2 = U” -cc,(At)(R’ -D”) 

U3 = U’-cr,(Ar)(R*-D) 

U4 = Un-aq(At)(R3-Dn) 

U”+l _ U4 - (35) 

where GL, = 0.25; CQ = 0.33; a3 = 0.50; ~1~ = 1.0, 
Rk = the residual representing the spatially discretized 

A, = c+CFL(C2 - I), 

A, = (pk)k+ ‘/2+tlkCFL(p~)“+ “’ 

and 

A, = - [(pc)(pk)]“+ I”. 

The solution to equation (38) is substituted back into 
equation (36) to determine the updated value of (pk). 
After solving equations (37) and (38), values of the 
turbulent viscosity are updated at all node points 
using equation (8). As discussed earlier, put relates the 
strain rate to the apparent viscous stresses throughout 
the turbulent flow field. 
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Ci = Predicted @resent Study,. 
l = Data of Snedeker and Donaldson 1281 
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FIG. 6. Radial spread of a subsonic jet-comparison between experimental data and model predictions. 

8. SOLVER VALIDATION 

The accuracy of the code used in this study is illus- 
trated by comparing simulation results for subsonic 
and supersonic free jets with experimental data 
obtained by Snedeker and Donaldson f28], Wyganski 
and Fiedler [29], and Rodi [30]. In addition, com- 
parison is made with predictions of other researchers 
who used k--E turbulence models for predicting sub- 
sonic jets. 

The rate of spread of a turbulent jet is governed by 
the rate of entrainment of surrounding fluid through 
the action of turbulent diffusion at the jet boundary 
[3 11. Therefore, comparing predicted and exper- 
imenta1 jet spreading rates provides a test of the com- 
bined ability of the turbulence model and numerical 
method to accurately represent flow fields similar to 
those that occur near the nozzle outlet during spall- 
ation drilling. 

Subsonic free jet‘ Plots of simulated and exper- 
imental [ZS] jet half-width vs downstream distance for 
a subsonic turbulent free jet exhausting into stagnant 
surroundings are shown in Fig. 6. Jet half-width is 
defined for a given downstream distance as the radius 
at which the axial velocity equals one-half of the 
maximum axial jet velocity. Both jet half-width and 
downstream distance are non-dimensionalized with 
nozzle radius. The nozzle outlet conditions and 

numerical parameters used for modeling this flow- 
fiefd are listed in Table 1. 

The half-width of a free jet is known to grow linearly 
with downstream distance from the nozzle once the 
potential core has disappeared and self similarity of 
cross-stream velocity profiles has occurred 1321. In 
this case, self similarity is said to occur when plots of 
axial velocity, turbulence intensity, temperature, etc., 
non-dimensionalized with their respective centerline 
values vs radius, non-dimensionalized with the jet 
half-width, fall on the same curves regardless of the 
axial location. The slope of the line joining the jet half 
widths in the self similar region of the flow-field is 
defined as the spreading rate. 

Table I. Nozzle outlet conditions and modeling parameters 
for subsonic free jet 

Parameter Value 

Nozzle Mach number 
(Ma) 

Nozzle Reynolds number 
(Re,,,) 

Inlet turbulence intensity 
C,? c,, c, 
CFL 
E”z, E”, 
-~.-. 

0.52 

129 200 
0.5% of mean kinetic energy 

1.42, 1.92. 3.13 
I.0 

0.0,0.001 
---- 
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Table 2. Comparison of predicted round-jet spreading rates 
with measurements and predictions of other investigators 

-.-_ 

Experiment (Snedeker and Donaldson [28]) 0.086 
Experiment (Rodi [30], Wyganski and Fiedler [29]) 0.087 
Predicted-Reynolds stress closure 0.136 

(Launder & Morse 1341) 
Predicted-standard (Hanjalic and Launder f33]) 
Predicts-modified (Hanjalic and Launder [33]) 
Predicted-modified (this study) 
-_..._ 

0.115 
0.098 
0.100 

Note : Spreading rate is defined as & ,Jaz where r ,,,z = the 
radius at which the jet velocity equals one-half of the center- 
line value and z is axial distance measured from the nozzle 
outlet. In the self-similar jet region, the spreading rate is 
constant. 

Table 2 contains a comparison of spreading rates 
obtained by severat experimenters 128-301 with pre- 
dictions of other workers and with predictions made 
during the present study. The level of error in the 
experimental results is unknown but the good agree- 
ment obtained between the results for the three exper- 
imental studies cited indicates that the error is probably 
less than 1%. The present prediction (shown as ‘this 
study’ in Table 2) uses the ‘modified’ turbulent dis- 
sipation equation of Hanjalic and Launder [33] and 
is about 15% too high when compared to the exper- 
iments. In the ‘modified’ k-a model, a separate con- 
stant (C,) is used to multiply the terms responsible 
for turbulence production by normal stress com- 

0.10 

0.06 

0.06 

ponents in the transport equation for the dissipation 
rate of turbulent kinetic energy. This modified form 
contrasts to the ‘standard’ k--E model which does not 
properly account for the relatively high normal 
stresses that occur in round turbulent jets and, there- 
fore, overpredicts the spreading rate by about 30- 
35% (Table 2). Both the standard and the modified 
k-E models predict spreading rates for planar jets to 
within approximately 2% of experimentally measured 
values. 

A comparison between predicted and experimental 
[30] non-dimensional turbulent kinetic energy profiles 
in the self similar region of the jet is shown in Fig. 7. 
In this case, the turbulent kinetic energy (k) is scaled 
with centerline velocity (U,) squared and radial pos- 
ition is scaled with jet half width (l&. The &-IO% 
under-prediction of centerline turbulence levels is 
comparable with the results of Hanjaiic and Launder 

[331. 
Supersonic free-jet. Figure 8 is a comparison of 

predicted jet half-widths with experimental values [28] 
for a sonic (Mu = I), highly underexpanded (PjeJ 
Pam,, = 3.57) jet exhausting into stagnant surround- 
ings. Other parameters are listed in Table 3. 

Experimental errors are estimated as +S%. The 
terminal spreading rate is overpredicted by about the 
same percentage in this case as for the subsonic case. 
Furthermore, the predicted supersonic core length 

n = Predicted Pmxmt Study). 
0 = Data of Rodi [30] 

0.00 0.60 1.20 1.60 2.40 3.00 

r/ry2. 

FIG. 7. Predicted and experimental turbulent kinetic energy profiles (specifications given in Table 2) 
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FIG. 8. Radial spread of a supersonic jet--comparison between ex~rimenta~ data and model predictions 

(the last downstream point at which the centerline 
Ma > 1) is 36 nozzle radii (Fig. 9), as compared to 
experimental values of about 4W nozzle radii [28]. 
Correct prediction of the supersonic core length is 
important because it determines whether or not a 
normal stand-off shock occurs in the impinging flow- 
field during thermal spallation drilling. 

Approximately three shock diamonds, corres- 
ponding to pairs of extrema in the Ma vs Y curve, 
are predicted at the nozzle outlet as the high inlet 
pressure adjusts to the ambient pressure (Fig. 9). The 
first of these shocks results in a Mach number less 
than one, implying that a ‘Mach disk’ forms normal 
to the mean flow direction. The second and third 

Table 3. Nozzle outlet conditions and modeling parameters 
for supersonic free jet 

__-__-_~~-~ 
Parameter Value 

___--.- ~___~ _~~. -----_ 
Nozzle Mach number 

(W 1.0 
Nozzle Reynolds number 

(&) 600 000 
Inlet turbulence intensity 5% of mean kinetic energy 
c,, c2, c, 1.42, 1.92, 3.13 
CFL 1.0 
e;, & 0.01, 0.001 

pI,1fPamh 3.57 

shocks are predicted to be oblique, although the data 
of Snedeker and Donaldson [28] indicate that the 
second one is also a Mach disk. Reducing the second 
difference artificial dissipation coefficient in the pre- 
sent scheme results in correct prediction of the second 
normal Mach disk but destabilizes the code by allow- 
ing small oscillations of the shock structure. Super- 
sonic core length and jet-spreading rate were affected 
by less than 4% by changing the artificial dissipation 

level. 
Free-jet predictions using the standard form of the 

k--E model have also been conducted during this study. 
Although not shown, the resulting subsonic jet 
spreading rates are about 2% lower than those 
obtained by Hanjalic and Launder [33] using the same 
model (see Table 2). Calculations of the supersonic 
case resulted in a core length of 32 nozzle radii and a 
terminal spreading rate approximateIy equal to that 
given by Hanjalic and Launder’s subsonic prediction 
(standard model). 

The modified value of C3 in the validation work 
described above was used to investigate variations 
in prediction accuracy possible for relatively minor 
changes to the modeling constants and to confirm that 
similar levels of accuracy could be obtained using the 
Aow-field solver implemented in the present study as 
those obtained previously by other workers. Pre- 
hminary simulation runs were conducted using 
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0 = Simulation Results (Present Study). 

A = Predicted End of Supersonic Core. 

n = Measured End of Supersonic Core 
(Snedeker and Donaldson [ZS]). 

0.50 1.00 1.50 2.00 2.50 3.00 

Mach Number. 

FIG. 9. Centerline Mach number as a function of distance from the nozzle outlet. 

‘standard’ and ‘modified’ k--E models for predicting 
impinging jet flow fields similar to those that occur 
during thermal spallation drilling and revealed that 
the increased sensitivity to normal strain rates of the 
modified model leads to nonphysical results near the 
stagnation point. Predicted turbulent viscosity values 
approach zero because of the higher predicted levels 
of the turbulence dissipation rate. A large flow recir- 
culation zone forms starting at the stagnation point 
and having a radius of approximately six nozzle radii. 
These results conflict with experimental observations 
made by Snedeker and Donaldson [28] for impinging 
supersonic jets. Moreover, predicted penetration rates 
were two orders ofmagnitude less than those routinely 
observed using thermal spallation drilling. 

The standard k-E model did not predict the anom- 
alous recirculation zone described above, and pre- 
dicted heat transfer rates and spatial heat transfer 
distributions consistent with those observed in prac- 
tice for both subsonic and supersonic jets at moderate 
stand-off distances and pressures. Furthermore, the 
standard k-c model has been extensively tested by 
other researchers and the various modeling par- 
ameters have been more firmly established than the 
modified constants of Hanjalic and Launder [33]. 
Therefore, the standard k-6 model was used for all 
thermal spallation simulations reported in this paper. 
The maximum accuracy that is expected to be 

achievable for jet-spreading rate and supersonic core 
length is approximately +35%, corresponding to the 
errors for the ‘standard’ model results given in Table 
2. Since the behavior of the wall jet and corresponding 
heat transfer to the rock surface is heavily influenced 
by the impinging jet flow field, similar, or worse, accu- 
racy should be expected for the overall simu~dtion 
results. 

9. GRID GENERATION 

Grid generation is broken down into two steps in 
this study : determination of an initial grid with appro- 
priate point clustering in high gradient regions and 
smoothing of the grid using an elliptic equation set to 
equalize grid spacings and force the cell edges closer 
to orthogonality with one another. The elliptic grid 
generation procedure described by Steger and Sor- 
enson 1351 was used to smooth the initial grid. A 
typical example of a final grid is illustrated in Fig. IO. 

10. BOUNDARY MOVEMENT ALGORITHM 

The component of the penetration rate that is par- 
allel to the drill axis ( Vdr) must be the same at steady- 
state conditions for all points along the spalling rock 
surface. Equation (2) accounts for this effect with the 
cos (@) term. Vdr is calculated as an average of pre- 
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points SO that ‘wiggles’ do not appear. The boundary 
movement is finally performed by using the smoothed 
values of R,, giving : 

ryw = rlld +oR,,,, sin (0) 

32.05 

24.04 

‘j - i, -“=+ - -Old -mRpr., cos (0) (43) 

where ri and zi are non-dimensional boundary coor- 
dinates, and o = a user-defined acceleration par- 
ameter (x2.0). R,, is always set equal to zero at the 
centerline and the boundary is not allowed to move 
below z = 0 so that the stand-off distance cannot 
change during a simulation, since stand-off distance 
is considered an input parameter. 

16.02 

8.01 

0.00 

During most runs, the starting boundary shape was 
elliptical and the first steady-state solution was 
achieved after 100&l 500 iterations. Typical require- 
ments for the remainder of the simulation were : less 
than 1000 iterations to achieve a steady-state flow fieid 
at each fixed boundary position, and SO-70 boundary 
movements to reach the final hole shape. Convergence 
of the hole shape was observed to occur when the 
predicted variations were less than 0.5 nozzle radii. 
Typically, about one hour of CPU time on a Cray- 
XMP computer was required for convergence at each 
stand-off distance and set of conditions. 

11. SIMU~TION RESULTS 

0.00 2.96 5.92 8.87 11.83 14.79 

Radius 

FIG. 10. Smoothed computational grid. 

dieted penetration rates for all points from a radius of 
one-half nozzfe diameters to the point where @ = 45”. 

The average of the dulling veiocities predicted for 
the previous and current boundary heat flux profiles 
is used to determine the movement necessary to force 
self-consistency. The equation used is : 

where U$fj = previous predicted value of penetration 
rate at location ‘i’. 

The updated boundary angle at each location is 
calculated by averaging the current value with that 
predicted by the local penetration rate : 

cos (@J = 0.5(c0s (@i)“‘d + u&,/V~r). (40) 

The non-dimensional ratio of the local excess to aver- 
age penetration rate (R,,) at each point on the surface 
is given by : 

4x.i = Ucir.i/ 6 - 1. (41) 

These values are smoothed by averaging each with the 
values from the two nearest neighboring boundary 

(42) 

Predicting penetration rates and hole radii depends 
upon predicting the steady-state flow-field for each 
hole geometry, and, after the required number of 
boundary adjustments, a steady-state hole geometry 
for each specified set of torch operating conditions. 
Each flow field was assumed to have converged when 
an averaged value of the Stanton number (St) varied 
by less than 0.5% per 1000 iterations. Predicted hole 
shape usually oscillated toward a steady-state value 
and convergence was assumed when the amplitude of 
the oscillations in the hole radius was less than 0.25 
nozzle radii. 

Computer simulation runs were conducted for three 
sets of modeling assumptions: the basic solver, as 
outlined above ; the basic solver with a heat capacity 
that varies with gas temperature, and the basic solver 
with a variable heat capacity and mass injection at the 
spalling surface to represent the momentum deficit 
introduced into the boundary layer by spa11 liberation. 
The effect of each of these modeling methods is illus- 
trated in the plot of St vs non-dimensional hole radius 
in Fig. II. 

The most important improvements in the basic 
solver algorithm used in this study over the approach 
developed in 1986 by Rauenzahn [6] are second order 
accurate advection and node point clustering in high 
gradient regions. These improvements should result 
in less numerically-induced smearing of flow-field 
gradients and correspondingly higher values for wall 
heat fluxes and shear stresses. In Fig. 11, the curve 
generated in the present study is seen to be higher 
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FIG. Il. Stanton number vs hole radius-illustration of effects of variable heat capacity on simulation 
accuracy. 

than the results reported by Rauenzahn and Tester 
[9, IO], and both predicted curves are higher than the 
experimental results. 

In the basic solver, the value of the heat capacity is 
set equal to the inlet value throughout the flow-field. 
In reality, the heat capacity decreases at lower gas 
temperatures resulting in lower heat capacities near 
the rock wall than at the nozzle. A lower heat capacity 
results in a proportionally lower turbulent thermal 
conductivity (A,) because the turbulent Prandtl num- 
ber (Pr, = ,u,C,/L,) is assumed constant at 0.86. The 
results for the variable heat capacity case illustrated 
in Fig. 11 indicate that the predicted Stanton numbers 
decrease by approximately 30% compared to the 
values predicted using the basic solver. However, the 
results are still about 1.5 times higher than exper- 
imentally observed Stanton numbers. 

Roberts et al. [36] observed that solids liberation 
from a surface changes the turbulent boundary layer 
structure and reduces heat transfer rates to the 
surface. In the present study, spa11 liberation from the 
rock surface is approximated, perhaps crudely, by 
assuming that it is similar to transpiration blowing. 
The modeling is implemented by applying blowing 
boundary conditions to the convective terms of the 
far-field conservation equations. Therefore, at the 
rock boundary, the mass flux normal to the surface is 

set equal to the main flux determined by the local 
drilling rate : 

(PY) = WJci,). Wi 
Recall that U,, is determined from the calculated heat 
flux through equation (I), assuming that AH,,, z 0. 
Heat fluxes and viscous stresses are calculated using 
the traditional wall functions (equations (13) and 
(14)) without modifications for the cross-stream vari- 
ations in shear stress and heat flux that would occur 
during true transpirational blowing since the fre- 
quency of spa11 ejection is low relative to the charac- 
teristic time for the hot gases to advect along the rock 
surface and out of the actively spalling region. 

Simulation results including variable heat capacity 
and mass injection are plotted in Fig. 12 and are within 
5% of experimental Stanton number and hole radius 
measurements. Adding a variable heat capacity and 
approximating mass injection due to spa11 liberation 
each made about the samecontribution toward dimin- 
ishing the discrepancy between experimental data and 
results predicted by the basic solver. 

12. CONCLUSIONS AND 
RECOMMENDATIONS 

Despite the agreement between predicted and 
ex~rimental results, an accurate description of the 
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FIG. 12. Stanton number vs hole radius~omparison of experimen~l results with predictions made using 
variable heat capacity and mass injection. 

boundary layer velocity and temperature profiles is 
necessary to validate the modeling employed in the 
present study, especially with the approximations 
made in modeling the influence of spail liberation 
on heat transfer. The present approach should be 
regarded as an attempt at placing bounds on the 
potential influence of spa11 liberation on the transport 
phenomena occurring during spallation driliing. The 
good agreement between predictions and experiments 
could simply be the result of fortuitous cancellation 
of errors. Future experimental and theoretical and 
theoretical studies of the physical interactions between 
gases and solids within turbulent boundary layers, for 
example large eddy simulation, are necessary before 
more detailed modeling can be justified for repre- 
senting the flow field that exists during thermal spall- 
ation drilling. 

The general behavior of the predicted Stanton num- 
ber vs hole radius is quantitatively characterized using 
either the upwind differencing method of Rauenzahn 
[6], or the second-order accurate method employed in 
the present study. Using the second-order numerical 
method for the base solver resulted in about 30% 
higher values of predicted Stanton numbers than 
those reported earlier by Rauenzahn and Tester 
19, IO]. Including the effect of the temperature varia- 
tion on the gas heat capacity reduced predicted 

Stanton numbers by approximately 30% relative to 
the base solver, accounting for some of the discrep- 
ancy between predicted and experimental Stanton 
numbers. Approximating the effects of spali liberation 
from the rock surface on heat transfer rates as con- 
tinuous t~nspiration blowing further reduced pre- 
dicted Stanton numbers by 35%. The combination of 
all these effects resulted in excehent agreement (within 
5%) with experimental results, suggesting that the 
mass-injection effect upon the boundary layer should 
be investigated further. 

Future efforts should focus on expanding the spall- 
ation drilling data base, focussing attention on meas- 
uring those quantities that are necessary for validating 
computational models. The data base couid be 
expanded by perfo~ing laboratory drilling exper- 
iments varying P,,,, qCt, RE,,,, and Ma),,. 

To improve the ffexibiIity of the computational 
model for predicting alternate geometries (e.g. cavity 
formation), an unstructured methodology for grid 
generation and flow model implementation should be 
considered. To increase understanding of the influence 
of spa11 entrainment on near-wall transport phenom- 
ena, heat flux and turbulence structure measurements 
on a simplified flow geometry (e.g. a flat plate) with 
intermittent solids injection should be performed. 
Finally, to rapidly estimate penetration rate and 
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hole geometry trends during thermal spallation drill- 
ing, a lumped parameter model should be formulated 
using insight gained from numerical modeling and 14. 

field experiments. 

15. 

Acknowle&ements-The authors would like to thank Rick 
Rauenzahn, Robert Potter, Judson Baron, Pretinder Virk, 16. 

and Kenneth Smith for their useful comments and sugges- 
tions during the course of this work. CRAY computer time 
was provided by Los Aiamos National Laboratory and San- 17. 

dia National Laboratories provided partial support of this 
project. The Natural Sciences and Engineering Research 
Council of Canada is also gratefully acknowledged for pro- 18. 

viding partial fellowship support to one of the authors 
(MAW). The efforts of the anonymous reviewers of the paper 
in pointing out areas for improvement are also acknowl- 
edged. 19. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8 

9. 

10. 

II 

12. 

13. 

REFERENCES 

J. A. Browning, Flame-jet drilling in Conway, NH. gran- 
ite, Unpublished report of work done under Univ. of 
California order number 4-LIO-2889R-1 (1981). 
R. E. Williams, T. Dey, R. M. Rauenzahn, R. M. Kranz, 
J. W. Tester, R. Potter and H. Murphy, Advancements 
in thermal spallation drilling technology, Los Alamos 
National Laboratory Report LA-11391-MS, Los 
Alamos, NM (1988). 
H. C. H. Armstead and J. W. Tester, Heat Mining. E. L 
F.N. Span, London (1987). 
J. W. Tester and H. J. Herzog, The economics of heat 
mining: an analysis of design options and performance 
requirements of hot dry rock (HDR) geothermal power 
systems, Energy Sysfenzs and Policy 15(l), 33-63 (1992). 
R. E. Williams, F. E. Beck and R. M. Potter, Thermal 
spallation drilling research report, Subcontract No. 9- 
X68-5616R-1 between Los Alamos National Laboratory 
and New Mexico Institute of Mining and Technology 
(1991). 
R. M. Rauenzahn, Analysis of the rock mechanics and 
gas dynamics of flame-jet thermal spallation drilling, 
Ph.D. Thesis, Massachusetts Institute of Technoloav _. 
(1986). 
R. M. Rauenzahn and J. W. Tester, Flame-jet induced 
thermal spallation as a method of rapid drilling and 
cavity formation, Proc. 60th Assn. Tech. Co& and 
Exhibition, Sot. Petrol. Eng. Paper 14331, Las Vegas, 
NV (1985). 
R. M. Rauenzahn and J. W. Tester, Rock failure mech- 
anisms of flame-jet thermal spatlation drilling: theory 
and ex~~mental testing. Inr. J. Rock Me& Min. Sri. 
26(S), 38Il399 (1989). 
R. M. Rauenzahn and J. W. Tester, Numerical simul- 
ation and field testing of flame-jet thermal spallation 
drilling-Part I. Model development, ht. J. Heat Muss 
Tronsfizr 34, 795.-808 (1991). 
R. M. Rauenzahn and J. W. Tester, Numerical simul- 
ation and field testing of flame-jet thermal spallation 
drilling-Part II. Experimental verification, ht. J. Hent 
Muss Truns#& 34,809-8 18 ( 199 1). 
J. A. Browning, W. B. Horton and H. L. Hartman, 
Recent advances in Bame-jet working of minerals, 7th 
$$,rrzp. Rock Mech., Pennsylvania State University 
(1965). 
T. N. Dey, More on spallation theory, Los Alamos 
National Laboratory Internal Memorandum No. ESS- 
3-286-84 (1984). 
M. A. Wilkinson and J. W. Tester, Experimental 
measurement of surface temperatures during flame-jet 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

induced thermal spallation, Rock Mech. Rock Eqn,q 
26(l), 29-62 (1993). 
0. Reynolds, On the dynamical theory of incompressible 
viscous fluids and the determination of the criterion, 
Phil. Trans. Roy. Sot. A 186, 1233164 (1895). 
J. Boussinesq, Essai sur la theorie des eaux courantes, 
Mem. Prrstes Acad. Sci. 23, 46 (1877). 
B. E. Launder and D. B. Spalding, The numerical cal- 
culation of turbulent flows, Cornput. Method.t Appl. 
Engng 3,269-289 ( 1974). 
W. P. Jones and B. E. Launder, The prediction of lami- 
narization with a two-equation model of turbulence, Inr. 
J. Heat Mus.s Transfer 15, 303--314 (1972). 
J. R. Viegas and M: W. Rubeson, W’all-function bound- 
ary conditions in the solution of the Navier- Stokes equa- 
tions for complex compressible flows, Paper No. .4IAA- 
83-1694 (1983). 
L. Prandtl, Uber die ausgebildete Turbulenze, ZAMM 
5, 136139 (1925). 
D. F. Dipprey and R. H. Sabersky, Heat and momentum 
transfer in smooth and rough tubes at various Prandtl 
numbers, /nt. J. Neat Muss Trurwfer 6, 329-353 (1963). 
M. A. Wilkinson. Computat~onai modeling of the gas- 
phase transport phenomena and experimental inves- 
tigation of surface temperature during flame-jet thermal 
spallation drilling, Ph.D. Thesis, Massachusetts Institute 
of Technology, Cambridge, MA (1989). 
P. L. Roe, Error estimates for cell-vertex solution of 
compressible Euler equations, NASA CR-178235 
(1987). 
R. Peyret and T. D. Taylor, Computational Nethods for 
Fluid Flow. Springer-Verlag, Berlin (1983). 
R. H. Ni, A multiple grid scheme for solving the Euler 
equations, AIAA Paper 81-1025 (1981). 
A. Rizzi and L. E. Eriksson, Computation .of flow 
around wings based on the Euler equations, J. F&d 
Mech. 148,45-71 (1984). 
K. G. Powell, Vertical solutions of the conical Euler 
equations, Ph.D. Thesis, Massachusetts Institute of 
Technology (1988). 
A. Jameson, A vertex based multigrid algorithm for 
three-dimensional compressible flow calculations, 
ASME Syrnp[l.~iunl on hi~eric~I Methods jbr Com- 
~re.~.sib~e FIow. Allnahiem (i986), 
R. S. Snedeker and C. dup. Donaldson, Experiments on 
free and impinging underexpanded jets from a con- 
vergent nozzle, Aero. Res. Assoc. Princeton Report No. 
ARAP- (1964). 
1. Wyganski and H. E. Fiedler, Some measurements in 
the self-preserving jet, J. FluidMec,h. 38,577.-612 (1969). 
W. Rodi, The prediction of free turbulent boundary 
layers by use of a two-equation model of turbulence, 
Ph.D. Thesis, University of London (1972). 
H. Schlichting, Boi&aary La,per Theory (7th Edn). 
McGraw-Hill, New York (1979). 
J. 0. Hinze, Twhulerzce (2nd Edn). McGraw-Hill, New 
York (1975). 
K. Hanjalic and B. E. Launder. Sensitizing the dis- 
sipation equation to irrotational strains. J. Fluids Engng 
102,344o (1981). 
B. E. Launder and A. Morse, Numerical prediction of 
axisymmetric free shear flows with a Reynolds stress 
closure. In Turbzllent Shear Flilws I. Springer-Verlag, 
New York (1979). 

35. J. L. Steger and R. L. Sorenson, Automatic mesh point 
clustering near a boundary in grid generation with ellip- 
tic partial differential equations, J. Comput. Ph.vs. 33, 
405410 (1979). 

36. G. T. Roberts, R. A. East and N. H. Pratt, Surface heat 
transfer measurements from a turbulent, dusty boundary 
layer, Proc. 14th Int. Symp. on Shock Tubes und Shock 
Waves, pp. 455462, Sydney, Australia (1983). 


